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Abstract—Capacitive isolation is a potential alternative to
magnetics-based isolation in emerging applications, such as in
partial power processing converter topologies, and in applications
where weight and component volume are limiting factors. This
work presents a capacitively-isolated Cockcroft-Walton converter
capable of isolation through the flying capacitors. Generalized
equations for mid-range flying capacitor voltages and switch
voltages for converters of even level count are detailed. Experi-
mental results validate the topology and analysis with a hardware
prototype demonstrating 120 V input, 93.87% efficiency, and up
to 60 V of isolation.

I. INTRODUCTION

Hybrid switched-capacitor converters have been shown to
be competitive with traditional magnetics-based converters in
both efficiency and passive component volume due to their
utilization of energy-dense capacitors for energy processing
[1]. However, one important feature that is yet underdeveloped
in hybrid switched-capacitor converters is isolation between
the input and output voltages. Traditional implementations of
galvanic isolation employ transformers to create the isolation
barrier. It is important to note, though, that transformers are
costly in both component volume and weight. In applications
where passive volume is a key design constraint, such as in
data centers and in electric aircraft, the dielectric material
of capacitors may instead be used to achieve isolation [2]
[3]. While typical capacitors do not offer the same safety or
reliability as magnetic isolation, capacitor-based isolation can
still be utilized in alternative applications, such as in enabling
partial power processing or in composite converters. This work
is motivated by converter applications that require extreme
conversion ratios and output regulation. In such applications,
series-input, parallel-output stacked converters can achieve
high power density [4] [5] [6], though such topologies require
isolation to allow for a series-input configuration. An example
system architecture for a series-input parallel-output composite
converter is shown in Fig. 1. Previous work introduced a
capacitively-isolated Dickson converter [7] [8], which utilizes
capacitors for energy processing and as the isolation barrier for
a composite converter, thereby enabling the high conversion
ratios required for tethered robots in space [9]. Existing
literature [10] demonstrates the viability of the Cockcroft-
Walton converter for extreme conversion ratios. This work
proposes the introduction of a capacitor-based isolation barrier
into the Cockcroft-Walton converter to support isolated power
transfer in applications requiring extreme conversion ratios.
The proposed topology, shown in Fig. 2, relies on distributed
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Fig. 1: Example system diagram for a partial power processing
converter.

inductors to achieve full soft charging, and uses capacitors to
create an isolation barrier between the converter’s input and
output return path. For this topology, the level count is equal to
the conversion ratio. This work presents the design, analysis,
and characterization of a 6:1 capacitively-isolated Cockcroft-
Walton prototype, with hardware results validated at a high-
side voltage of 120 V and a demonstrated 60 V of isolation.
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Fig. 2: Schematic of an N-level capacitively-isolated
Cockcroft-Walton converter.

II. ANALYSIS

Figure 3 shows the two-phase operation of a 6:1 variant
of the proposed topology. An odd level count introduces
significant changes to analysis and design of the converter and
will not be presented in this work. However, analysis presented
holds for any even level conversion ratio. Charge flow analysis
[11] of the 6:1 converter yields a normalized charge vector of
(1) for capacitor vector (2).

q = [3, 3, 2, 2, 1, 1] (1)

C = [C1L, C1R, C2L, C2R, C3L, C3R] (2)
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Fig. 3: (a) Phase one operation of a 6:1 isolated Cockcroft-
Walton converter under two-phase control. (b) Phase two
operation.

The charge at each stage can be generalized for an N-level
version of the converter as (3) where k is the index of the left
and right capacitors as defined in Fig. 2. The peak-to-peak
capacitor ripple for both capacitors in stage k is defined as
(4).

qk =
N

2
− k + 1 (3)

∆vpp,k =
qk
Ck

(4)

Equal capacitor ripple is chosen to simplify analysis of the
converter. Therefore, flying capacitor values are calculated as
(5), where each value is scaled by the capacitance at the N

2
stage, C0. The resultant capacitor vector normalized by C0 for
this 6:1 converter is then (6).

Ck = C0(
N

2
− k + 1) (5)

C = [1, 1, 2, 2, 3, 3] (6)

Accordingly, inductors in each stage are selected to maintain
resonant operation. The resonant frequency is presented in
(7), where L0 and C0 are the values of the inductors and
capacitors, respectively, at stage N

2 of the converter. As a
result, the inductor value at each stage is equal to (8).

fres =
1

2π
√
L0C0

(7)

Lk =
L0

N
2 − k + 1

(8)

The inductor vector for this converter, normalized by L0, is
as follows.

L = [1, 1,
1

2
,
1

2
,
1

3
,
1

3
] (9)

The mid-range capacitor voltages can be generalized to the
following, where the isolation voltage, VISO, is defined as the
dc voltage offset between the low side of the rectifier and the
input ground.

vk,L =

{
−VISO for k = 1
2VHI
N for k = [2, N

2 − 1]
(10)

vk,R =

{
VHI
N − VISO for k = 1
2VHI
N for k = [2, N

2 − 1]
(11)

The switch voltages are presented in (12), where m is the index
of the switch as described in Fig. 2. Note, the switch stress
decreases as a function of level count, enabling the usage of
lower voltage switches, which have improved figures of merit
[12] [13] [14]. Moreover, as is typical of resonant tank con-
verters [15], the switch voltage does not experience increased
stress with capacitor ripple and can be sized independent of
load and isolation voltage.

vds,m =


VHI
N for m = [1, N + 1]
2VHI
N for m = [2...N ]

VHI
N for m = B[1− 4]

(12)

Fig. 4: Passive volume as a function of level count and
isolation voltage.

Previous work [16] introduces a method for optimizing
capacitor and inductor sizing for hybrid switched-capacitor
converters operating at and above resonance. This approach
computes the peak energy stored in each passive component
and then uses the approximate energy density of capacitors
and inductors, as found in [17], to determine the total volume
of the passive components. Figure 4 shows this method ap-
plied to the capacitively-isolated Cockcroft-Walton converter
demonstrated in this work. As the level count, conversion ratio,
or isolation voltage is increased, the energy storage required
of the capacitors also increases, thereby increasing the total
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Fig. 5: (a) Front side of the 6:1 Cockcroft-Walton prototype. (b) Back side of the prototype.

passive component volume.

III. HARDWARE DESIGN

A 6:1 capacitively-isolated resonant Cockcroft-Walton con-
verter was built to validate the proposed topology and analysis.
The operating conditions are shown in Table I. The value
of C0 was informed by the optimization method [16] with
consideration for level count and conversion ratio, and then
selected from among commercially available capacitors of
discrete values. The value of L0 was chosen for resonant
operation at 200 kHz, per (7). The passive components are
listed in Table II. The prototype board uses a two-sided design
for improved space utilization: switching cells and bulk input
and output capacitor banks are on the top side of the board as
seen in Fig. 5a, while the flying capacitors are on both sides of
the board, and the inductors are solely on the bottom side, as in
Fig. 5b. To minimize the commutation loop, the string switches
were placed in a U-shape, such that S1 and S7 (Fig. 3) are
close to the input. For the initial experimental prototype, signal
and logic power isolation were achieved using ADUM5241s.
Future implementations of this topology will investigate using
cascaded bootstrap circuits to improve the overall system
efficiency and to decrease board area [18]. The distributed
inductors can be replaced with a lumped inductor on both input
sides of the bridge. This would allow for a reduced passive
component volume relative to the version of the converter
with distributed inductors, owing to inductor scaling laws as
presented in [19]. However, removing the resonant tanks at
each stage of the converter will remove the converter’s soft
charging capabilities, so a converter with lumped inductance
under two-phase control would incur hard charging losses.
To avoid this, split-phase control can be implemented on the
converter.

IV. EXPERIMENTAL RESULTS

The measured efficiency of the 6:1 converter across various
loads at 120 V input voltage and 0 V of isolation voltage is
demonstrated in Fig. 6. The converter’s peak efficiency was

Description Parameter Value
Output Voltage VOUT 20 V
Input Voltage VIN 120 V
Operating Frequency fres 193 kHz
Isolation Voltage VISO 60 V

TABLE I: Converter specifications.
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Fig. 6: Measured hardware prototype efficiency as a function
of output power, with fixed 120 V input.

found to be 93.87% at a load of 5 Ω and an output power
of 69.4 W. The efficiency was measured with a Yokogawa
WT5000 power analyzer and does not include gate drive
losses.

Figure 7 demonstrates the isolation capability of the con-
verter by presenting the measured flying capacitor voltages
at a VISO of 0 V, 30 V, and 60 V. This figure validates
(10) and (11). Furthermore, the sinusoidal nature of the flying
capacitor voltages indicates resonant operation, affirming the
passive component vectors in (6) and (9) Additionally, the
sinusoidal waveforms in Fig. 7 indicate soft charging of the
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Fig. 7: (a) Measured flying capacitor voltages with an applied isolation voltage of 0 V, (b) 30 V, and (c) 60 V.
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Fig. 8: (a) Switch voltages measured at an input voltage of 120 V.

Component Part Number Description
C0 C5750NP02W104J280KA 100 nF, 450 V
L0 IHLP2525CZERR33M01 330 nF, 20 A
Cin KTS501B105M76N0T00 1µF, 500 V
Cout CL31B105KCHNNNE 1µF, 100 V
S[1−7]/[B1−B4] EPC2304ENGRT 200 V, 5 mΩ
Gate Driver NCP81074ADR2G 5 V, 10 A
Isolator ADUM5241ARZ Power and Signal

TABLE II: Components for the hardware prototype.

capacitors owing to the inductors distributed at each stage of
the converter. The ripple on the flying capacitors is equal in

magnitude, further supporting the component scaling vectors.
The generalized switch voltage equations presented in (12)
are experimentally validated in Fig. 8, where all 11 switching
devices are measured at an input voltage of 120 V.

V. CONCLUSION

This work has presented the analysis, design, and im-
plementation of a 6:1 capacitively-isolated Cockcroft-Walton
converter capable of achieving isolation between the input and
output return path. Contributions include generalized equations
for mid-range flying capacitor voltages for even level counts,
as well as generalized switch voltage equations and verifica-
tion of the topology under various levels of isolation. These



equations are validated in hardware, and experimental results
are shared. The prototype converter reaches a peak efficiency
of 93.87% at an input voltage of 120 V and output power of
69.4 W, thereby proving the suitability of this converter for
future implementation in partial power processing converters.
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